天天彩票

Products

Home > Products Guide > DynAmp LKCO

DynAmp LKCO

DynAmp LKCO

LKCO represents a significant breakthrough in high current measurement. Advanced optical technology senses the phase shift in light caused by the magnetic field from the bus current when it is routed around a current carrying bus via fiber optics.


Key Features

Superior, rejection of external influences. Permits installation on compact and geometrically complex bus work. No need for DynAmp Bus Analysis or exact positioning to optimize performance.

Excellent Low Current Performance thanks to true bi-directional operation and near perfect integration of the bus magnetic field.

Extremely compact and light-weight. Designed to be “bus bar mounted”. Eliminates additional support and protection structures. Compact modular head allows installation with less than 500px of bus clearance

Patented Closed-Loop “Full Compensation” places the entire system (light source, opto-electronics, fiber optics and even measurement outputs) under closed loop control to automatically compensate for long term changes.

 

Technical Overview

1) Polarized light is split into two linearly polarized light waves.

2) The two linearly polarized light waves are converted to circular polarization before traveling

around the bus, reflecting off the end of the fiber and returning along the same path.

The bus magnetic field creates an optical phase shift due to the Faraday effect. Because the two

light waves are polarized in opposite directions, the shifts are in opposite directions.

Other conditions, such as vibration, also create an optical shift but affect the two light signals in

the same direction, therefore not changing the “measurement” shift.

3) The two light waves return to the opto-electronics where phase shifts are measured for a 'raw'

measurement signal

4) Patented closed-loop full compensation accurately nulls this shift electromagnetically in the

same medium that sensed the bus current. This automatically compensates for any gain, sensitivity

and zero point change or long term drift in the entire system ( light source, opto-electronics, fiber

optics and measurement output signal ).

5) Advanced Accuracy Diagnostics (A<sub>2</sub>D) continuously monitors system operation and performance to enhance measurement confidence. A<sub>2</sub>D notifies user of specific installation problems, developing problems and faults. A<sub>2</sub>D even records events for subsequent analysis and root cause investigation and is available via digital connection.

 

Specifications

Input : Bus Current to +/- 600 kA full scale

Over-current 110% of F.S. measurement

Infinity without damage

Measurement Performance (applies from 10% to 110% of F.S.):

Measurement accuracy ±0.1% of measurement

Repeatability ±0.02% of measurement

Linearity ±0.1% of full scale

Measurement Outputs : Uni-directional or bi-directional

Standard :Low Level Shunt Voltage Feedback Current (5V max burden)

< 100kA 10mV / kA or 1V FS 1A FS

> 100kA 1mV / kA or 1V FS 4mA/kA (250000:1)

Optional : Low-level current 0/4…20mA full scale

High-level voltage 0 to +/- 10V FS

Frequency 0 to 10kHz full scale Digital / network ModBus or ProfiBus

Digital display Internal or remote

Mains 95…264VAC@47…63Hz or 100…264VDC

350VA w/o environmental options

Isolation ( Hi-Pot tested at 60Hz )

Head to output / chassis 6.0kVAC for 1 minute

Mains supply to output 1.5kVAC for 1 minute

Mains or Output to chassis 1.5kVAC for 1 minute

Environmental Operating Storage

Measuring Head IP65 -40º to 70ºC -40º to 70ºC

Compensation Module IP65 -40º to 70ºC -40º to 70ºC

Metering Unit IP54 -10º to 40ºC* -40º to 70ºC

*Metering Unit requires fan option from 30º to 40ºC

or air conditioning option for over 40ºC ambient, requires heater option below -10ºC

Humidity (non-condensing) 0 to 85% 0 to 60%

Metering Unit to Compensation Module Cabling

DynAmp supplied cabling : 30m standard

Connectors at Metering Unit

Physical

Metering Unit 1525px w x 77 h x 54 d

Compensation Module 1100px w x 39 h x 17 d

Measurement Head Modular, sized to bus

(250px x 250px cross-sec)